generate_arc.Rd
generate_arc()
generates the matrix of archetypes using specified coordinates (some noise added).
generate_data()
produces matrix of random data that fits a polytope defined by archetypes by multiplying position of archetypes by random weigths (that sum to 1)
generate_arc(arc_coord = list(c(5, 0), c(-10, 15), c(-30, -20)), mean = 0, sd = 1) generate_data(archetypes, N_examples = 10000, jiiter = 0.1, size = 1)
arc_coord | list of archetype coordinates, one numeric vector (length of N dimensions) per each archetype. |
---|---|
mean | mean of random distribution added to arc_coord |
sd | standard deviationn of random distribution added to arc_coord |
archetypes | matrix of archetypes of dim(dimensions, archetypes) |
N_examples | number of examples to be generated |
jiiter | add noise to weigth so that data is not a perfect polytope (e.g. triangle, see examples) |
size | scale the data within a polytope |
generate_arc()
object of class "random_arc" (similar to "pch_fit"), element XC is a matrix of archetypes of dim(dimensions, archetypes)
generate_data()
matrix of archetypes of dim(dimensions, examples)
# Random data that fits into the triangle set.seed(4355) archetypes = generate_arc(arc_coord = list(c(5, 0), c(-10, 15), c(-30, -20)), mean = 0, sd = 1) data = generate_data(archetypes$XC, N_examples = 1e4, jiiter = 0.04, size = 0.9) # Find Euclidian distance between data points and archetypes distance = arch_dist(data, archetypes)#> Warning: first element used of 'length.out' argument#> Error in seq_len(ncol(archetypes)): argument must be coercible to non-negative integer#> Warning: first element used of 'length.out' argument#> Error in seq_len(ncol(archetypes)): argument must be coercible to non-negative integer